本文共 4759 字,大约阅读时间需要 15 分钟。
ResNet:
一、介绍name: "ResNet_50_1by2"layer { name: "data" type: "Input" top: "data" input_param { shape: { dim: 1 dim: 3 dim: 224 dim: 224 } } // 第一个维度是图片数,第二个是通道数,后面的是图片的长宽}layer { name: "conv_1" type: "Convolution" bottom: "data" top: "conv_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 3 kernel_size: 7 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } }}
shape {
dim: 1 #num,可自行定义 dim: 3 #通道数,表示RGB三个通道 dim: 32 #图像的长和宽,通过 _train_test.prototxt文件中数据输入层的crop_size获取 dim: 32}
二、训练
深度残差网(deep residual networks)的训练过程
1、下载基于python的训练代码:
2、pyfunt需要安装:
@ubuntu:~$ sudo pip install git+git://github.com/dnlcrl/PyFunt.gitDownloading/unpacking git+git://github.com/dnlcrl/PyFunt.git Cloning git://github.com/dnlcrl/PyFunt.git to /tmp/pip-MS88tP-build customize UnixCCompiler warning: no files found matching 'setupegg.py' warning: no files found matching 'bscript' warning: no files found matching 'bento.info' warning: no files found matching '*' under directory 'doc' warning: no files found matching 'tox.ini' warning: no previously-included files matching '*_subr_*.f' found under directory 'pyfunt/linalg/src/id_dist/src' no previously-included directories found matching 'doc/build' no previously-included directories found matching 'doc/source/generated' no previously-included directories found matching '*/__pycache__' warning: no previously-included files matching '*~' found anywhere in distribution warning: no previously-included files matching '*.bak' found anywhere in distribution warning: no previously-included files matching '*.swp' found anywhere in distribution warning: no previously-included files matching '*.pyo' found anywhere in distributionSuccessfully installed numpy tqdm cython torchfile pyfuntCleaning up...
3、
@ubuntu:~/deep-residual-networks-pyfunt$ git clone https://github.com/dnlcrl//PyDatSetCloning into 'PyDatSet'...remote: Counting objects: 185, done.remote: Total 185 (delta 0), reused 0 (delta 0), pack-reused 185Receiving objects: 100% (185/185), 29.90 KiB | 11.00 KiB/s, done.Resolving deltas: 100% (111/111), done.Checking connectivity... done.
@ubuntu:~/deep-residual-networks-pyfunt/PyDatSet$ sudo python setup.py install[sudo] password for wei: /usr/lib/python2.7/distutils/dist.py:267: UserWarning: Unknown distribution option: 'install_requires' warnings.warn(msg)running installrunning buildrunning build_pyrunning install_libcreating /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/gtsrb.py -> /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/__init__.py -> /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/sfddd.py -> /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/tiny_imagenet.py -> /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/cifar10.py -> /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/mnist.py -> /usr/local/lib/python2.7/dist-packages/pydatsetcopying build/lib.linux-x86_64-2.7/pydatset/data_augmentation.py -> /usr/local/lib/python2.7/dist-packages/pydatsetbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/gtsrb.py to gtsrb.pycbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/__init__.py to __init__.pycbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/sfddd.py to sfddd.pycbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/tiny_imagenet.py to tiny_imagenet.pycbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/cifar10.py to cifar10.pycbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/mnist.py to mnist.pycbyte-compiling /usr/local/lib/python2.7/dist-packages/pydatset/data_augmentation.py to data_augmentation.pycrunning install_egg_infoWriting /usr/local/lib/python2.7/dist-packages/pydatset-0.1.egg-infowei@ubuntu:~/deep-residual-networks-pyfunt/PyDatSet$
The CIFAR-10 dataset
DownloadIf you're going to use this dataset, please cite the tech report at the bottom of this page.Version Size md5sumCIFAR-10 python version 163 MB c58f30108f718f92721af3b95e74349aCIFAR-10 Matlab version 175 MB 70270af85842c9e89bb428ec9976c926CIFAR-10 binary version (suitable for C programs) 162 MB c32a1d4ab5d03f1284b67883e8d87530
参考资料:
LeNet、AlexNet、GoogLeNet、VGG、ResNet使用caffe测试自己的图片
神经网络与深度学习 Caffe部署中的几个train-test-solver-prototxt-deploy等说明<三>
Kaiming He
[caffe]深度学习之MSRA图像分类模型Deep Residual Network(深度残差网络)解读
使用Keras搭建深度残差网络
梯度下降优化算法综述
深度学习所有文章